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1. SYSTEM MODEL

The front end of the radar receiver is shown below:

LOCAL

OSCILLATOR

0Ar

AMPLIFIER MIXER AMLFE

Let the voltage transfer function relating the IF amplifier output

signal to the RF amplifier input signal be the zero-memory

nonlinearity specified by

21 1 -Z2/2a2
v = g (v) ___ e g dZ. (1)
o i '4i f

90

Due to the mixer, the carrier frequency of v is translated from that

of vi by an amount equal to the local oscillator frequency. Other

than for this frequency shift, the spectrum and correlation function of

v is unaltered. For simplicity, the nonlinearity is modeled as
0

though v and vi have identical carrier frequencies. The voltage ............

transfer function accounts for the cumulative nonlinearities in the RF

amplifier, mixer, and IF amplifier. r
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Observe that

2- Z /2ag 2E_2 /2
g (0) - 42x f eZ2 dZ - 2_x-' 'g fe -Y2 dy -. (2)

g 0  g 0

and

g - 2 e Z2 /2 dz 2 e Z2/2 dZ - -t. (3)

4j2g-o2  f 9 j 2_-a
g 0 g -00

Hence, the voltage transfer function is modeled as a soft nonlinearity

with saturation levels at +t. Note that the integrand of g(') is

proportional to a zero-mean Gaussian probability density function

(pdf) with variance oY. a is referred to as the rms value of the
g g

voltage transfer function. Let Yi denote the rms value of vi. The

ratio of these two rms values yields the parameter
a

a- (4)a i

When v. " ,g' the output is

a1

o g Z2 e g dZ = f e dy 0.68t. (5)
g 0 0

The slope of the voltage transfer function is

dv -v./2o2o 2t 1 g____ 22o e .(6)

dv. 4--o

At the origin, therefore, the slope is x Yg. Consider the linear

transfer function,
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vO = f (v.) - - v i . (7)
g

When v. - 9g, the output of the linear transfer function is1

(8)

v - z2- X - 0.80 t.

Hence, when v* -.g' the nonlinear transfer function is down from an

ideal linear transfer function by

20 og 8--- 1.4 dB. (9)
10.801

In this sense, a is a measure of the linearity of the voltageg.

transfer function. On the other hand, G. is a measure of the input1

fluctuations. Thus, a is an indicator of the "width" of the linear

portion of the voltage transfer function relative to the rms value of

the input signal.

2. DISTORTION OF THE PDF CAUSED BY THE NONLINEARITY

Let the pdf's of V. and V be denoted by Pvi(vi) and pV (V )
1 0

respectively. It follows that I

1(vo p (vi) d-1 (10)PV°  P~i  vi-g (vo).

From Page 2,

dv. 4 2xF +v-/2-2
e 1 g (

dv 2E
0

2

Let V be a zero-mean Gaussian random variable with variance Ci"

3



Then

Pviv e (12)

It follows thatp()- 1 2-o*1,..*)ivn)*
P2-& 2 e -1 (13)

Simplifying, we have

(14)

a -(v2 /2a2)'[&/l2i - I]
1 i g g

PV (v 0  a - i e -1 M (
o vi-g (vo)

a - (v 2 /202) (a2 -1]
M a-1i g (15)

vi-g (V o0

a (a2-1)/2e] g-1 (V 0 2

e (16)

For a - 1,

1

o0 0 L 0 otherwise,

AT

Thus, the IF amplifier output is uniformly distributed when a, - a1 g

For a >1, the exponent in P V (v0) is negative. Note that
0

-1 -1g (C) - and g (-E) -c-* (18)
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Thus, the density function goes to zero at v 0 +Z. The output

density function is approximately Gaussian provided a >>1. However,

irrespective of how large is a, pV (v) can never be Gaussian since v0 o

is constrained to the interval (-t,t) whereas a Gaussian random

variable can assume values in the infinite interval (--, -). For

a < 1, the exponent in pV (v ) is positive. The density function then
0

goes to - for v = + Z. In the limit, as a - o, the density function0

approaches two impulses as shown below.

6'V.

Ar

This suggests that the characteristic of the voltage transfer function

approaches that of a hard limiter as C c 0:

o ArA6

-2

Sketches of pV (v) for various values of a - - are shown below:
o=

00

I
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At the origin, g-1 (0) - 0 and

v) a~ (19)PV o 2
0

3. DISTORTION OF THE CORRELATION FUNCTION CAUSED BY THE NONLINEARITY

Define the Fourier transform of the voltage transfer function to

be

00r -Juv.

G(ju) =  g(vi) e dv. 201

The output correlation function is given by

R 0 () - E(v (t) v (t-r) (21)

The output voltages can be expressed in terms of the Fourier

transform of the voltage transfer function according to

a*
juv (t)

ot) 2 Gtju) e du (22)

-00
and

00I i jwv i lt- 1

v (t-) - g[v (t-10] = f Gjw) e dw. (23)0i 27rJ
-00

It follows that

00I 00
rrjuv. C t) jwv.i (t-T)

R (T) E J f G(ju) G(jw) e e du dw (24)

-00 -00

00 00 wvt1JG(ju) G(jw) E e j e du dw. (25)
4R200c 

00

o6



The quantity,

M(ju, jw) - E e euv (t) iv(t-?) , (26)

is recognized as the joint characteristic function of the random

variables v. (t) and v, (t-T). Hence,

R "L 2 f[ G(ju) G(jw) M(ju, jw) du dw. (27)
0 41C fjj

Let v, (t) and v. Ct-T) be jointly Gaussian zero-mean random

variables with variance az and correlation function
g

R (T) - E [vi(t) vi(t-) 1. (28)

Their joint characteristic function is then given by

(29)
-1/2[O. u2 + 2R.C1) u w + (i wI]

M(ju, jw) = e

(30)
- (i/2) .U2 + 2 piMt) u w + w2 ]

-e

where
a. 1t)
R.(T

Pi(t) (31)

is the correlation coefficient relating v, (t) and v. (t-T). As a

result, the output correlation function can be expressed as

1 I - (E3/2) Cu2 + w2 ] -R (M) uw
RO(T) - TZ2 J JG(Ju) G(jw) e dudw. (32)

To evaluate G(ju), we make use of the differentiation property of the

7



Fourier transform. To begin with, we have the Fourier transform pair

2t - Z2 / 20 ,2
g(vi) e -/- e g dZ +-. G(ju). (33)

g 0

Using the differentiation property,

dg (vi) _2t -v2./ 2

- - e 1 g -. ju G(ju). (34)
dv. 42 g

However, it is well known that

e v /2& 4& -a2U2 /2e - I/20g - 4 42--r e g (35)
g

It follows that

-a2 zu2 /2
'2t- 42ia- e g -ju G(ju). (36)

g g
Thus,

-a&u
2 /2

G(ju) = -- e (37)
Ju

Substituting into the expression for R 0(), we have
0

2 f f-(a2 /2) u2 + w2] -(Oz/2) Eu2 + w2 ]-R.()uw

R (r) 0 (- -(i/uw)e e dudw.o 4E2 j"
-00 -0

(38)

Combining terms in the exponent of the integrand,

12 0) 0r (2 [ 2 1 )/2] (U2 . w2 
)-R.()uw

R 1?1 242 J (l/uw)e g dudw. (39)
0 4n2-00 j00

To obtain an integrand without the factor of - , we differentiate
uw

R 0() with respect to R. (). Specifically,

8



aR( () 2 0 -0(a2+,2 )/21 .(U 2 +W2 ) -R,(T) uw
dR- 0 (2 ) J e g g 2 dudw.

(40)

Now make the change of variables

x u and y-j w. (41)

2 2 (1

This results in

dR (T) () 2  2 00 ( 2 +y 2 ) [2R. (T)/(a'+2.)xy

dR. (T) - 47c 2 a+a2 J e g f dxdy. (42)
. g1

To further simplify the intregand, introduce the variables V and y

such that
a

x - h(v,y) = V - 7 V = x + ay (43)

y k(v,y) 1a= 41-a2 y (44)

where
R, (T)

a -(45)
g

The Jacobian of this transformation is given by

ah aih 1 -a
J(VY) =av 1- 1 (46)

3k ak 0 - 'Il-a
av TY '- 2

Hence,

1
dxdy - dv dy (47)

With this transformation, the exponent of the integrand becomes

9



2a _a___2_w (8

- (x 2 +y2 + 2a c]-- -V + a2  + 2a (48)

1 TZ 2 z Tz [ a 2 +1-2a 2 T2
+ 1 Y 2 2a 2 21 V2 + a +-aY 2  (49)

T=a1-az 1(9

- - [v 2 "'y 2 ] (50)

dR ('T)
Thus, the expression for eR i)

1

dR 0 19 t) 2 2 1J (v 2 +7 2 ) (1

The double integrand is readily evaluated to yield

f f e dvdy - (52)

Consequently,

dRo . 2) -). 1 -1/2

dRi (T) 2xc +027J

Recalling that

d (sin- u] 1 du (54)
dx 4 UZ dx

it follows that

R (C) - (2)2 in-1 R iC() + c (55)0 2x TO

where c is a constant of integration. To evaluate c, consider the

special case for which

10



(56)
g i

and T - 0. Then

R. (0) - CT. (57)

and

R (0) (2) 2 sin -1 (1) + c (58)0 21c

4 2 2 £
- 27c 6 + - + C. (59)-2Er 6 3

a

However, a -2 - 1. From page 4 of the notes, the output pdf is
a.

3.

-Li ; -£ z< v !5 E
[2£' 0

Pv(vo) -~ (60)o0 0 ; otherwise.

Hence, 2  v2  £

E[V2) - R (0) - dv - 2 (61)
0 o 0 2t 3 a

It follows that c - o. The output correlation function, therefore, is

given by

(2E) 2 -1 [R, (1)
R () (2i) sin e (62

0 2x g(62)

Recalling that
Ri (T)

PV() --- and a-- -  , (63)
00

R 01(1 can also be expressed as

(64)

R 0  (2t) 2 sin-

4. DISTORTION OF THE POWER SPECTRAL DENSITY CAUSED BY THE NONLINEARITY

The power spectral density at the output of the nonlinearity is

11



given by

S 0(0) = R0VT) e dc (65)

- (2) sin - pi(?) e -jCr d,. (66)

Assume the normalized input correlation '. ction is

-BITI

p. ( ) = e (67)

This corresponds to white Gaussian noise passed through a lowpass RC

filter of bandwidth B. Hence, the power spectral density at the

nonlinear input is

S. (0)) 2B 2 1
1iW ~B2+W - B 1+(0)/B) 2  (68)

To evaluate the output power spectral density, we expand

sin [pi(')/(l+c 2)] into a Taylor series and integrate term by

term. For simplicity, let a - 1.

Then

.2 2 +.. .2 J 4 (5 (69)

1 -BII -3Bilj -5BJ I
- -e + .0208 e + .00234 e +... (70)

2

By inspection, the output power spectral density is given by the

series expansion

S 1 = (2 )2 r' 2B 6B B 71)o 2g 1 B+ + .0208 (3B)2+W + .00234 (5B) 2 + .(0))

(2E)2 [ 1 +.*014 1 +.000936 1 (72)
2--x LB 1+(w/B) B +((W/3B) T B 1+(o/5B)

12



- ,2t) 2  1 [ 1 1 __ _ _ _ 1
27 B I+(O/B)? + .014 1 + .000936 5)2 +.* (73)

2 B 1 (TB 1+ (co/3B) 2  1+ (CO/5B)

In general, the output spectrum can be thought of as resulting from

the superposition of an infinite number of spectra having bandwidths

B, 3B, 5B, etc., as shown below.

I ' - , I ;
-SS -13 -33 -as -8 a a n 3B ¥8 SeB -4

Because the infinite series converages rapidly, the total power

outside the interval (-B, B) is relatively small. Nevertheless, it

may be significant in the subclutter visibility application.

13



Effects of Mutual Coupling on the Angle of

Arrival Estimation Problem

Braham Himed Donald D. Voiner

ECE Dept., Syracuse University
Syracuse, N.Y 13244.

(315) 443-4406

ni(t) is the additive noise assumed to be

Abstract zero-mean,
= wsin(Ok)/c

This paper deals with the compensation of w is th center frequency of each of the spa-

mutual coupling effects in a sensor array when tial sources.

using the subspace approach known as the matrix c is the speed of propagation of the plane

pencil. This method is easy to implement and is waves,

applicable even in the presence of coherent a(O) is the beam pattern of each sensor.

sources. Computer simulation shows that use of the
mutual Impedance matrix effectively compensates Given the number of sources d and the m data

for the presence of mutuals. points , yi(t,e) , we form (d+l) vectors Yn of
length (m-d), where

Introduction
Directioo finding, which involves the nT (yn,yn,,..,ynm-d-1

] ; n-i,. ... (d.1).

estimation of the angles of arrival of sources, is
very important in many sensor systems such as The two matrices M1 and N1 are then formed
radar, sonar, seismology, etc. Over the years
several methods have been proposed to solve this t- -ttt

kind of problem 11,21. Recently, subspace ap- I I I I I
proaches have been introduced 12-71. They are
based on an eigenvalue-eigenvector decomposition Ml = 1 _2 . . . d ; N1 - 2 13 . •. !d+l
of the correlation matrix. They are shown to yield
asymptotically unbiased estimates of such signal I I I I 1
parameters as angles of arrival and number of sig- 4 1 4. 4
nals. However, these methods have not taken into
account effects of mutual coupling between array Let

elements which can significantly alter the
etgensystems underlying the solution procedures. IJ1 1 ... 1

In this paper, we are dealing with the compensa- ei eJ*2 . . . eJ~d

tion for mutual coupling effects when using the
subspace approach known as the matrix pencil ap- A

proach. Computer simulations show that significant
improvement in the estimates for the angles of ar- -j(m *j(m-d-m-d
rival can be achieved. J-d-1)0 e m-d-142 e

Moving Window.
al

Assume we have a linear array composed of m a2  0

identical sensors with uniform spacing D. Let
there be d< m narrowband sources located at B.

azimuthal angles O ; k.1,2,...,d , emitting sig-
nals whose complex envelopes are denoted by sk(t); 0

k.l,2 ,3,...,d. Assume the sources are in the far ad
field such that planar vavefronts arrive at the
array. With reference to the first sensor, the
received signal at the ith sensor is modeled as eJ3  0

d
Y(t,-O)-r Sk(t)a(Ok)ej(-)Ok -ni(t) ()

k=l
for 1.1,. . .,m, 0 eJ d

where ST ( sa ,s2 ..... d

This work was supported by the Rome Air Develop- and
ment Center under contract F 30602-81-C-0169 nT = [nn,nnl ...... nnm-d-I1"

Then Yn can be rewritten as

14



A #* BS + Nn (2) E(M1
11
M1j=U

1
iVU +(m-d)0

2 
Id (4)

and the matrices H1 and N1 become ELN1HMII.UH#VU + (m-d)e
2 Ild (5)

i tt t t where Id is the (dxd) identity matrix ,ld is the

I I I I matrix

M1. ABOSs... @(d-S) 1S 2 • • . . d 0 1 0 0.... 0
0 0 10 . . . .0Im I 4, I , o o o ....0o
0 0 0 1 .j. . .id

Ild.
0 0 0 0 oo ... .o

N1. A AB#2S . . . ABWS + N2 N-3  . d+l and V the matrix

I I I I I V=EISHBHAHASI.
~ 4,4, 4 4

Defining

Let F, S, U, N', and N" be the matrices
m-d

i-I -1
5pq - EjsqsPF- *( rd~l)s Fpq - e1S~p

. S # • .apq = aqsp,

the matrix V can be written as

SllaljllI S21a21F21 . . .. SdladlFdl

Sl S1 2a12 F12  S2 2a2 2F22  . ... Sd2ad2Fd2
s2  0

S - V.

Sd

SldaldFld S2da2dF2d . . . . SddaddFdd

1 eJl . . . eJ(dl)41

1 eJi2 . . . eJ(d- 1 )2 Thus, I
M • H . EIMlHMi-(m-d)02 Id 'UVU (6)

U-

1 e . ej(d1)d N - E[NI 1 ]M-(m-d)a Ild.U*#HVU. (7)

The matrix pencil then becomes

I IM-)N1 - UHVU-XUHIJHVU ' UR(I-)\#)VU (8)

N'- NI 2 . . d vhich satisfies the requirements of the pencil
theorem. Hence, the values of X for which the rank

I I I of H-XN decreases by 1 are given by

k - eJk ; k.1,2,...,d. (9)

The angles of arrival are given by

t t t ek - sin-l(-jcln(\k)/wD); k-1,2,...,d. (10)

I I I
Mutual Coupling

Consider a linear array of m dipoles
1 I I uniformly spaced at a distance D. Each dipole is
4,4 4 •of length t and has a radius r satisfying the con-

dition r<<t. A load is attached to the center gap
Then ,, of each dipole. Assume there are d narrovband sig-

Hi - ABSU N' and N1 = ABS#U N . (3) nals impinging on the array as planar wavefronts.
The voltages induced by the assumed signals on the

Assuming the signals and noise to be statistically loads are the outputs of the dipoles. Induced cur-
independent and that the noise components are un- rents will appear on the dipoles. These currents
correlated from sensor to sensor, we get reradiate and generate scattered fields. The scat-

15



tered fields then induce currents on the neighbor- In matrix notation
ing dipoles. The process of induction and reradia-
tion causes the mutual coupling among the dipoles. V(S)=-Z 1 20

Using one sinusoidal expansion and weighting - -(0

function per dipole, the method of moments (9,10) where
was used to obtain the matrix of mutuals. Denote
the current distribution by J(z) (assuming longi- V(s)T~jV(s)(l),V(s)(2),. Vsmj
tudinal distribution and neglecting all other dis- and

tributions) and the J-th expansion function by 1T[jI(I),I(2 )_ ,..,I(m)j.

AIen The matrix Z can be decomposed into two parts as

M Z=Zo+ZL
JMz-E I(j)fj(z) (11) where

J-1 Z0 is the generalized impedance matrix
and

where I(J) are unknown amplitudes to be
determined. At a point (y,z) in the Y-Z plane, the ZL is the load matrix.
scattered field is given by

Assuming that all loads are loaded with the same
a load zI, the matrix ZL is given by

j=)y~)EI~jEV ')(2

21 0
where E j(s)(y z) is the scattered field from the
J-th dipole. Th e total field will then be ZL'

EQy,z)-E(inc)(y,z) + E(s)(y,z) (13) 0

where EOinc) Is the incident field. .Let EZ be the Z

z-component of the total field. A generalized Tei-heeeto ,teeoei

voltage V(i) induced on the subsection spanned by 2ij .z+z6i.
the function fj(z) can be defined with respect to ~ i
a weighting function w(z) as The voltages induced on a load zl are given by

V(i)=F(E2 (y,2),wi(z)) (14) V(t) -ZL I and I ZL'l V(t)-

where F is bilinear with respect to E,(y,Z) and However,
wi(y,z). vnl) . Zi ZOZL IVMt + _M
Similarly, we define

V(inc)(i)=F(Eiinc)(y,z),wi(z)) (15) which implie', that

and v~)i.(i)yz)w~)-(6 (t) Lt ZOZLl11_ V(inc). (21)

TuV(i).V~inc)(i),V(s)(i), which becomes, forLeHbetemri

metallic scatterers, H= II4ZOZL 11. (22)

V~i)V~in) M.~s)().OH can be written as

or V-n)() 1*(zll/z 1 ) (zl2/zl) . . . (zly/z2)

However, H

m
V(s)(i) =F( E I(J)E(5jy,z),wi(z)) (z. Z) (Z2/l . . . l.(Zm~/zl)

Thus, when incident signals are impinging on the
array and in the presence of additive noise, the

m output of the linear array will be

j-1 VMt H-l V~inc) +N.

Let ziJ be For simplicityS let

z~IJ-F(E(s?y,z),wj(z))- (18)an
ad y=v( t)

Thus W~e nnw h~ave a relationship between the incident
signals and the received signals at the outputs of
the array, which is

J-1 Y H-1 X - N. (23)

16



If we try to use the vector Y in the formulation REFERENCES
of the pencil theorem, it is not possible to ob-

(11 J. F. Bdhme, "Estimation Of Source Parameters
tain the decQmposition needed in that formulation. By Maximum Likelihood And Nonlinear Regression,"
An estimate X of X is needed in order to obtain Proc.IEEE Int. Conf. On Acoustics, Speech, and
the decompositions needed in formulation of the Signal Processing, San Diego, CA, pp.731-734,
pencil theorem. March 1984.

Assuming that the signals and noise are
statistically independent and that the noise com- [21 S. V. Lang and J. H. McClellan, "Spectral
ponents are uncorrelated zero-mean random vari- Estimation For Sensor Arrays," IEEE Trans. On
ables with variance e2 , the minimum error mean- Acoustics, Speech,and Signal Processing, Vol. 31,
squpred linear estimator results when the error pp. 349-358, April 1983.
(X-X) is orthogonal to the observed data Y.
Let X. R Y, where R is to be determined. After 131 A. Paulraj, R. Roy and T. Kailath, "Subspace
some computation and defining C to be the correla- Rotation Approach To Direction of Arrival Estima-
tion matrix of the observed data Y, we obtain tion," Nineteenth Annual Asilomar Coni., Pacific

R - H (C- 2 Im) C 1 . (24) Grove, CA., 1981.

Computer Simulation 141 H. Ouibrahim, "A Generalized Approach To
Direction Finding," Ph.D. dissertation, Syracuse

The scenario used for this simulation consisted of University, Dec. 1986.
two coherent sources (d.2) which are incident on a
linear array consisting of eight half wavelength [51 G. Bienvenu, "Influence Of The Spatial
dipoles (m.8). The sources are assumed to be lo- Coherence Of The Background Noise On High
cated at e=18" and e2=22 . The noise was simu- Resolution Passive Methods," Proc. IEEE ICASSSP,
lated to be white Gaussian with zero-mean and unit Washington, D.C., pp. 306-309, April 1979
variance. The sensors were positioned at half
wavelength apart such that hO/c = n . The results 161 R. 0. Schmidt, "Multiple Emitter Location
of the simulation are shown below. And Signal Parameter Estimation," Proc. RADC

Spectral Estimation Workshop, Rome, N.Y., pp. 243-
(Without compensation for the mutuals) 258, Oct. 1979.

mean mean variance variance 171 A. Paulraj and T. Kailath, "Eigenstructure
SNR el e2 el 62 Methods For Direction Of Arrival Estimation

In The Presence Of Unknown Noise Fields," IEEE
30 dB I20.6537 41.4553 4.177E-2 1.98405 Trans. on ASSP, vol.ASSP-34, No.1, pp. 13-20, Feb.

1986.
25 dB 20.6478 41.5294 4.556E-2 2.98911

[8] I. J. Gupta and A. A. Ksienski, "Effect of
20 dB I 20.6374 41.6539 5.787E-2 I 7.64255 Mutual Coupling on the Performance of Adaptive Ar-

rays," IEEE Trans. Antenna Propogation, vol. AP-
15 dB 20.6205 41.1151 1.192E-1 44.5549 31, No. 5, pp. 785-791, Sept. 1983.

191 A. T. Adams, "An Introduction to the Method
100 snapshots/run, 50 runs) of Moments," RADC, TR-73-217, Vol. 1, Aug. 1974.

(With compensation for the mutuals) (101 R. F. Harrington, "Field Computation by Mo-

mean mean ariance variance ments Method," Macmillan, N.Y, 1968.

s6 e1 2  e 2

30 dB 17.9308 I 21.9435 1 5.164E-3 I 8.784E-3

25 dB 17.8171 21.7513 I 1.947 E-21 3.909E-2

20 dB I 17.5739 20.9331 1 1.486 E-l 2.019E-1

15 dB 14.1798 I 20.1921 1 15.63312 I 5.963E-2

( 100 snapshots/run, 50 runs)

Note that extremely poor estimates are obtained
without compensation for the mutuals. Compensation
results in significant improvement.
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Abstract Problem Formulation

The moving window (11 is one of several Consider the problem of estimating the
operators that can be used in conjunction with angles of arrival of videband signals. The no-
the matrix pencil approach for estimating the tion of Fourier coefficients is used here in
locations of multiple sources. A major advantage conjunction with the matrix pencil approach. As-
of the moving vindow is that the locations of d sume that all incoming signals have approximate-
(d<n) completelX correlated narrowband sources ly the same bandwidth B. Let T be an observation
can be estimated using a linear equispaced array interval and let tL ano fN be the lowest and
of a sensors. In this paper, the concept of the highest frequencies contained in B. In practice,
moving window is extended to the videband case this band is determined by Fourier decomposition
by using the Fourier series approach to convert of the received signals. Assume we have a linear
each videband signal into a sum of narrovband array composed of m identical wideband sensors
signals. A transformation matrix is then intro- uniformly spaced at a distance A. Let there be d
duced to generate a single equivalent narrowband (d<m) wideband sources located in the far field
signal. Any narrovband high resolution technique so that plane waves arrive at the array. The
can be used at this point to generate the received signal at the i-th sensor can be
estimates. Computer simulations show that the modeled as
mvnng window performs better than ESPRIT.

d
Introduction xi(t)=Ea(ek)sk(t-'ik)+ni(t); i-i.... m, (1)

k-i
Many high resolution algorithms have been

developed for the case of narrowband signals. where T ik is the time delay that source k takes
However, narrowband modeling is not appropriate to travel from the reference point to the i-th
for wideband signals. In particular, the time sensor. Taking the reference as the first
delay cannot be approximated by a phase shift. sensor, Tik can be written as
Recently, several well known narrowband high
resolution algorithms have been extended to the Tik=(i-l)(d/c)sin(8k) (2)
videband case 12-61.

An effective approach consists of where c is the speed of propagation of the
decomposing the videband signals into sums of waves. Define the Fourier coefficients of the
narrowband signals [3-5]. Wax et. al. [31 use signal received at the i-th sensor by
the MUSIC algorithm to obtain a spectral
estimate by averaging either geometrically or /2
arithmetically the contributions from each of Xi(.r)= (T)" xi(t)exp(-jwrt) dt , (3)
the subbands. This incoherent processing is j-T/2
referred to as post averaging. Wang and Kaveh
141 have proposed a pre-processing scheme using where
linear transformations to combine the various wr'( 2 n/T)(rl~r) , r=1,2,. .. ,R,
sub-bands into a single band. As in the previous
paper, the MUSIC algorithm is employed. However, r, is a constant and R is the number of sub-
now only one elgendecomposition is needed to bands.
estimate the angles of arrival. This approach With reference to equation (1), the r-th
known as coherent signal subspace processing Fourier coefficient of xi(t) can be expressed as
(CSS) is shown to outperform the previous one.
However, a disadvantage is that a preliminary d
crude estimate of the emitter locations is re- Xi(wr).Za(ek)Sk(,r)e-i(i-l) k(wr) Ni(wr) (4)
quired. If the angles are clustered within a k-l
beamwidth, the method performs well. Otherwise, for 1=1,2,. . .,m,
spatial prefiltering is needed. The contribution
of this paper is to show that CSS can be corn- where the r-th Fourier coefficients of sk(t) and
bined with the moving window operator [II to ni(t) are denoted by Sk(wr) and Ni(u)r), respec-
solve for the angles of arrival. Computer tively, and
simulations reveal that the newly proposed tech-
nique performs better than ESPRIT 171. fk(wr)-(ur)(6/c)sin(9k). (5)
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(d+l) vectors Xn(wr) of length (m-d) are foumed R

Xn(wO) = (1/R) E Tn(wr)Xn(wr). (9)
where r=l

Xn(Ir)-[Xn() • . Xn+n-d-l(wr)I
T  

Let S' and N; be

n-I, 2 ...,(d+1) R
It is easy to show that Xn(wr) can be put in the S' (1/R) E Tn(wr)S(wr) , (10)

form r-l

X~(,o)A(wr) #(n-1) (wr)BS(r) +N n ( wr), (6)

R
where A(wr), f(wr), B, S(wr) and Nn(wr) are Nn= (l/R) I Tn(wr)Nn(wor) (11)

eJ#1(r) ... eiJd(wr) Therefore, Xn(wO) can be expressed as

A- Xn(0)=A(wo)#(n-1)(w )BS+N . (12)

In the remainder of this paper the dependence on
"ei(m-d-1)*d(rj w0 is assumed. The two matrices M1 and N 1 are

then formed where

a2 o 1

BS M 1  2 . . d ; N 1  - 2  3  " .d 1

0o I I I I I I
ad  .4, 4. 4, I. 4,ad.

-e#I~(wr) These can also be written as

ei#2(wr) 0 t t

I I)I NI( 3
9- I

M = ABS AB#S . . . AB#(d )S .+ N' (13)

e2d(wr) - . . .

and
Nl= ABS AB#

2
S . . AB4dS + N''. (14)

NT -Nn(¢-r) . . . Nn+m.dl(-r)][

Transformation matrices Tn(wr) 131 are then used

in such a way that
Let F, S, U, N' and N'' lie the matrices

Tn(wr)A(w~r) #(n-1 ) (,r =A(wO)f( n- 1) (wO) (7) .

where coo is a conveniently chosen flequency, I I I
usually selected as being the midband frequency.

Then F= S fS . . .0(d-)S

Tn(r)Xn(wr)Tn(or)A(wdr) (n-1 )(wr)BS(wr) I I

+ Tn(O)i)Nn(wr) 4 4

-A((o0) (n-I ) (wO)B_S(wdr)+Tn(wr)_n (wr). (8)

Assuming that we have R sub-bands, we form the S2  0

arithmetic average as given by S=

0
Sd

19



e 
3 
l . (d - 1 i M e mattrix pencil then becomes

1 eJ 2 . . . ej(d-1) 2 M-XN = Hvu-XuIfHvu=uH(I-xI1)vU (21)

U o which satisfies the requirements of the pencil
; theorem. Hence, the values of X for which the
SeJd • . eJ(d-)*d rank of M-)XN decreases by I are given by

Xk eJk ; k=1,2 ,..., d. (22)

I I The angles of arrival are given by

N' N' N2' •,d' = sin-' jcln(Xk)/wO}); k=1,2 .. . (23)

I t Simulation

Several possibilities exist for choosing
the transformation matrices Tn 171. It can beshown that a diagonal transformation leads to
the simplest analysis. Assuming the sources to
be clustered within the proximity of one loca-N2' !3' 'tion 8, the transformation matrices Tn(wr) thenj Ibecome

4, 4,4, J.Tn(wr)=ej(n-1)(wOwr)(6/c)sin(O
) Tl((4r)

Then whereH1 = ABSU+N' (15)
and Tl(Wr) = diag( 1 e-j(wo-#r)(&'c)sin(0)

N1 = ABS UJN . (16). .

Assuming that the signals and noise are
statistically Independent and that the noise With this transformation it follows that
components are uncorrelated from sensor to
sensor, we get Tn(wr)A(wr)#(n-)(Wr) = A( o)#(n_1)(.0)"

EIMIHM~iUHVU + EIN.HN.J (17) Assuming that the noise components are uncorre-
lated from sensor to sensor and from s yb-band to

ENIHMI=uH#HVU + EIN''HN'j. (18) sub-hand with zero mean and variance a , it can

where V is the matrix V=EISHBHAIABSI. Defining be shown that

m-d EIN'IIN'J = a 2 id

Fpq = . eJ(t-1 )(#p-*q), E(N..HN.- R 02 Ildt.1 'EN'N] =
Ro l

pwhere Id is the dxd identity matrix and Ild isSpq = E pS S , the matrix

apq = aqsp, 0 1 0 0 ..... 0

0 0 10 .. . . 0the matrix V can be written as 0 01 ... .0

SI 1au1 F11  . ... Sdlad-Fdl 1d = .
S2a12F12 . . .. Sd2ad2Fd2 . .. .

0 0 0 0 . . . . 1

V. OOOO0 .... 0

In the simulations, we have considered a linear
array consisting of 8 sensors uniformly spacedSldaldFld . . . . SddaddFdd at a distance 6=c/(2 fO) . Following the example

in [7), the two sources were assumed to be lo-Define the matrices M and N as cated at 160 and 20* and to have ideal rec-
tangular spectra of bandwidth B.40 Hz centered

M E[MlHMj-EN'HN'] = UH V U (19) at fo=100 Hz. The broadband signals were first
and decomposed into 33 narrowband components. 100
N - E(N1 HMlJ-E[N",HN' . UH #H V U. (20) snapshots were taken for each of the 50 runs.
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An initial estimate of 18* was used. Two cases
were considered for ESPRIT. In the first case,
overlapping subarrays were used. Thtus, the two
subarrays were composed of the first and last
seven sensors, respectively. In the second case,
non-overlapping subarrays were used. Here 4
pairs of sensors yere generated by using ad- -s
jacent sensors. The sample mean of the estimates
are shown in figures l and 3 for the sources at "(

16* and 221. The corresponding sample variances -I0

are shown in figures 2 and 4 along with the 2
Cramer-Rao lower bound (CRLB). In the figures, .
the moving window is denoted by (1), ESPRIT - N1).
(case 1) by 2, and ESPRIT (case 2) by (3). (4) ""'
represents the CRLB. For signal to noise ratios -20 (

greater than 10 dB, the three methods produce C)

comparable results for the sample mean. For SNR -
lower than 10 dB, moving window appears to have ' S-
the largest bias. However, for all value of SNR 3
between 5 and 30 dB, the moving window has the -

smallest variances. It is concluded that the C
moving window works well for broad band sources
when applied in conjunction with CSS. s 3S

I0 iS "o 25 30
SNR

Figure 2

Angle =  \'w Ic e )
°

16.11

416

- ----- -------

10 ,-

10 IS 20 25

Figure 1
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An lge= 20*
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